Fault Diagnosis in Nonlinear Systems Using Learning and Sliding Mode Approaches with Applications for Satellite Control Systems
نویسندگان
چکیده
In this thesis, model based fault detection, isolation, and estimation problem in several classes of nonlinear systems is studied using sliding mode and learning approaches. First, a fault diagnosis scheme using a bank of repetitive learning observers is presented. The diagnostic observers are established in a generalized observer scheme, and the observer inputs are repetitively updated using the output estimation error in a proportional-integral structure. Next, a framework for robust fault diagnosis using sliding mode and learning approaches is proposed to deal with various types of faults in a class of nonlinear systems with triangular input form. In the designed diagnostic observers, first order and second order sliding modes are used respectively, to achieve robust state estimation in the presence of uncertainties, and additional online estimators are established to characterize the faults. In order to guarantee that the sliding mode is able to distinguish the system uncertainties from the faults, two iterative adaptive laws are used to update the sliding mode switching gains. Moreover, different online fault estimators are developed using neural state space models, iterative learning algorithms, and wavelet networks. Another class of nonlinear systems where an unmeasurable part of state can be described as a nonlinear function of the output and its derivatives is considered next. Accordingly, a class of fault diagnosis schemes using high order sliding mode differentiators (HOSMDs) and online estimators are proposed, where neural adaptive estimators and iterative neuron PID estimators are designed. Additionally, a fault diagnosis scheme using HOSMDs and neural networks based uncertainty observers is designed in order to achieve a better performance in robust fault detection. If the
منابع مشابه
Model-based Robust Fault Diagnosis for Satellite Control Systems Using Learning and Sliding Mode Approaches
— In this paper, our recent work on robust model-based fault diagnosis (FD) for several satellite control systems using learning and sliding mode approaches are summarized. Firstly, a variety of nonlinear mathematical models for these satellite control systems are described and analyzed for the purpose of fault diagnosis. These satellite control systems are classified into two classes of nonlin...
متن کاملSensor Fault Detection for a class of Uncertain Nonlinear Systems Using Sliding Mode Observers
This paper deals with the issues of sensor fault detection for a class of Lipschitz uncertain nonlinear system. By definition coordinate transformation matrix for system states and output system, at first the original system divided into two subsystems. the first subsystem includes uncertainties but without any sensor faults and the second subsystem has sensor faults but is free of uncertaintie...
متن کاملRobust Tracking Control of Satellite Attitude Using New EKF for Large Rotational Maneuvers
Control of a class of uncertain nonlinear systems, which estimates unavailable state variables, is considered. A new approach for robust tracking control problem of satellite for large rotational maneuvers is presented in this paper. The features of this approach include a strong algorithm to estimate attitude, based on discrete extended Kalman filter combined with a continuous extended Kalman ...
متن کاملRobust Tracking Control of Satellite Attitude Using New EKF for Large Rotational Maneuvers
Control of a class of uncertain nonlinear systems, which estimates unavailable state variables, is considered. A new approach for robust tracking control problem of satellite for large rotational maneuvers is presented in this paper. The features of this approach include a strong algorithm to estimate attitude, based on discrete extended Kalman filter combined with a continuous extended Kalman ...
متن کاملDynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks
Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...
متن کامل